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Abstract

Currently in the United States there are no regulatory standards for ambient concentrations of 

Polycyclic Aromatic Hydrocarbons (PAHs), a class of organic compounds with known 

carcinogenic species. As such, monitoring data are not routinely collected resulting in limited 

exposure mapping and epidemiologic studies. This work develops the log-Mass Fraction (LMF) 

Bayesian Maximum Entropy (BME) geostatistical prediction method used to predict the 

concentration of 9 particle-bound PAHs across the US state of North Carolina. The LMF method 

develops a relationship between a relatively small number of collocated PAH and fine Particulate 

Matter (PM2.5) samples collected in 2005 and applies that relationship to a larger number of 

locations where PM2.5 is routinely monitored to more broadly estimate PAH concentrations across 

the state. Cross validation and mapping results indicate that by incorporating both PAH and PM2.5 

data, the LMF BME method reduces mean squared error by 28.4% and produces more realistic 

spatial gradients compared to the traditional kriging approach based solely on observed PAH data. 

The LMF BME method efficiently creates PAH predictions in a PAH data sparse and PM2.5 data 

rich setting, opening the door for more expansive epidemiologic exposure assessments of ambient 

PAH.
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1. Introduction

Polycyclic Aromatic Hydrocarbons (PAHs) are a class of organic compounds containing 2 or 

more fused aromatic rings created through incomplete fuel combustion from a variety of 

sources including biofuel burning, wildfires, coal production, etc.1,2 Several species of PAHs 

and their metabolites have been designated by the United States Environmental Protection 

Agency (US EPA) as being probable human carcinogens.3–6 Currently the EPA only has 

PAH regulatory standards for drinking water and the National Institute for Occupational 

Safety and Health (NIOSH) has established occupational exposure limits to coal tar pitch 

volatiles.7 International organizations and other countries have established ambient 

concentration guidelines for one of the more toxic PAHs, benzo(a)pyrene.8 However, 

currently in the US there are no regulatory standards for ambient concentrations of PAHs. 

Compared to regulated ambient air pollutants, there are few epidemiologic studies that have 

utilized observed data or explored ambient exposures to different PAHs, which can be costly 

to measure.9,10 From a geostatistical perspective, limited ambient observed data have 

resulted in few studies creating maps of PAHs concentrations.11–14 Others have used 

Chemical Transport Models (CTMs) to predict PAH concentrations.8,15,16 However, these 

studies are also limited in number. As a result, there is a gap in the literature exploring 

ambient PAH exposures and their associations with various health endpoints. Short-term 

health effects include eye and skin irritation, nausea and vomiting while long-term health 

effects include increased risk to skin, lung and bladder cancer as well as cardiopulmonary 

mortality.7 While many of these health effects are associated with either occupational 

exposures or drinking water exposures, the relationship between ambient concentrations of 

PAH to their associated health effects has not been well explored.

Both inside and outside the US there is a lack of consistent PAH observed monitoring 

outside of monitoring campaigns conducted for specific studies. In contrast to the data 

sparse environment of PAH observed data, Particulate Matter ≤ 2.5 micrometers in diameter 

(PM2.5) exists in a data rich environment with a vast, consistent, historical monitoring 

network across the US.17,18 Currently there are 16 EPA designated priority PAHs, 9 of 

which are particle-bound.13 Thus, a portion of PM2.5 can be particle-bound PAH. Currently, 
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the US state of North Carolina has no maps displaying PAH concentrations using observed 

data. This study explores the relationship between PM2.5 and PAH and is an extension of 

previous work done by Allshouse et al.13 that developed the log-Mass Fraction (LMF) 

Bayesian Maximum Entropy19,20 (BME) geostatistical method and applied this method to 

model the distribution of PAH near the World Trade Center after September 11th. The 

observational PAH data used in that work came from the analysis of 243 PM2.5 filters from 

four sites spanning approximately 200 days split among the sites near and around Ground 

Zero set up following September 11th.

In this work we analyze the PAH content of PM2.5 filters collected across the US state of 

North Carolina and implemented the LMF BME method to predict PAH concentration at 

unmonitored locations, creating the first maps of PAH across North Carolina for 2005 using 

observed data. Furthermore, we compare the LMF BME method with a simple Linear 

Regression (LR) BME method and more traditional geostatistical methods for the first time. 

Methods are evaluated through cross validation. Predictive maps are used to visualize the 

probability of exceeding PAH cutoff concentrations. Lastly, a comparison is performed 

between the LMF BME and other methods to learn how the relationship between PAH 

concentrations near wildfires may change for different prediction methods. These results 

provide a method for which a data sparse environment can be exploited in an efficient 

manner in conjunction with a data rich secondary data (e.g. PM2.5 data) environment in 

which the resulting relationship between the two can be applied to estimate concentrations 

of data sparse air pollutants elsewhere in a given domain. This cost-effective method in 

terms of analyzing observed data can be applied to other air pollution parameters that have 

not been previously mapped. This methodology opens the door for greater epidemiologic 

studies exploring the association between ambient concentrations of PAHs and various 

health endpoints.

2. Materials and Methods

2.1 Observed PM2.5 and PAH data

Daily PM2.5 filters in North Carolina during 2004-2005 were collected as part of the 

monitoring effort needed to provide the data reported in the EPA's Air Quality Systems 

(AQS) data base.17 Of the PM2.5 filters collected during this time period, we selected 84 

filters collected in 2005 and analyzed them for the following 9 species of PAHs: 

benz(a)anthracene, chrysene, benzo(b)fluoranthrene, benzo(k)fluoranthrene, 

benzo(e)pyrene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, benzo(g,h,i)perylene, 

dibenzo(a,h)anthracene and the summation of the 9 PAH species called Total PAH. PM2.5 

has units of μg/m3 and PAH has units of ng/m3.

2.2 The Linear Regression and log-Mass Fraction method

There are approximately 8,000 space/time locations for the state of North Carolina in 2005 

where daily PM2.5 is observed and recorded in AQS. PAH was estimated at these locations 

using surrounding PAH and PM2.5 information. There were two different PAH estimation 

methods: 1) a LR method consisting of a regression created from paired PM2.5 and PAH in 

an estimation neighborhood in which PAH is then predicted at locations where PM2.5 is 
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known and 2) a LMF method that assumes the ratio of PAH/PM2.5 is constant within an 

optimized estimation neighborhood in which PAH is then predicted by applying the ratio at 

locations where PM2.5 is known.

Let ph be the PAH space/time locations where PAH was directly measured from a PM2.5 

filter, where the location of the ith PAH measurement is denoted as pi = (si, ti) ∈ ph, where si 

is the spatial coordinate and ti is the time coordinate. Let ps be the space/time locations 

where PAH is estimated from PM2.5, in which the location of the jth individual estimate is 

denoted as pj ∈ ps.

The LR method is a simple linear regression of PAH with respect to PM2.5. This linear 

regression can be expressed at the pi locations (where both PAH and PM2.5 are measured) 

as:

ln(PAHi) = β0 + β1ln(PM2.5i) (Equ. 1)

The subsequent sections describe how the parameters β0 and β1 are estimated. The 

relationship in Equ. 1 can then be used to estimate PAH at the pj locations (where only 

PM2.5 is measured) with the distribution

ln(PAH j) N(β0, j + β1, jln(PM2.5 j), σLR, j
2 ) (Equ. 2)

where σLR, j
2  is the linear regression prediction variance.

The LMF method was defined by Allshouse et al.13 as expressing the relation between PAH 

and PM2.5 at the pi locations as

LMFi = ln
PAHi

PM2.5i
(Equ. 3)

which can be rewritten as

ln(PAHi) = LMF + ln(PM2.5i) (Equ. 4)

This approach is attractive because it uses only one parameter, namely LMF, to estimate 

PAH based on PM2.5, making the LMF more parsimonious and more localized around the 

estimation location of interest. At locations pj where only PM2.5 is measured, the mean 

μLMF,j and variance σLMF, j
2  of LMF can be estimated as
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μLMF, j = ∑i = 1
NLMF(p j) LMFi/NLMF(p j) (Equ. 5)

σLMF, j
2 = ∑i = 1

NLMF(p j) (LMFi − μLMF, j)
2/(NLMF(p j) − 1) . (Equ. 6)

NLMF(pj) is the number of LMFi values closest to the space/time location pj. The 

optimization of NLMF(pj) is described in subsequent sections

The relationship in Equ. 3 can then be used to estimate PAH at locations pj (where only 

PM2.5 is measured) as

ln(PAH j) N(μLMF, j + ln(PM2.5 j), σLMF, j
2 ) (Equ. 7)

Equ. 7 becomes a component in the BME estimation methodology described in section 2.4. 

In the limiting case, the LMF and LR methods are equivalent when β0 = μLMF,j and β1 = 1.

2.3 Neighborhood optimization

The parameters NLR(pj) and NLMF(pj) are optimized using the following methodology. For 

each of the 84 space/time PAH measurements, the measured PAH is excluded and re-

estimated based on the collocated PM2.5 using either the LR method (Equ. 2) or the LMF 

method (Equ. 7) calibrated based on the paired PAH/PM2.5 values located in a local 

neighborhood of the excluded PAH value. This local neighborhood consists of the n, the 

number of observed data ranging from 1 to 84, closest pairs, where space/time proximity is 

defined based on the space/time distance d = r + STM × t, such that r (km) is the spatial 

distance, t (day) is the time difference and STM (km/day) is the space/time metric. A given 

choice of the parameters n and STM creates 84 errors between measured and re-estimated 

PAH value, from which a Mean Squared Error (MSE) is calculated (Figure S1). This MSE is 

calculated for 75,600 different combinations of n and STM for each PAH and method (i.e. 

LR and LMF). For each PAH, the parameters NLR(pj) and NLMF(pj) are selected by 

choosing the n and STM that produced the lowest MSE. Due to the number of parameters of 

the LMF and LR methods (i.e. one parameter for LMR and two for LR), NLR(pj) ≥ 2 while 

NLMF(pj) ≥ 1. See Christakos and Serre (1999) for a more detailed explanation of the STM.
21

The values found for NLR(pj) and NLMF(pj) for each PAH are then applied to all pj locations 

to estimate the corresponding PAH using Equ. 2 and Equ. 7. The optimized n and STM were 

only used for the optimization of parameters NLR(pj) and NLMF(pj). These PAH estimates 

become input data in the BME estimation framework described next.
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2.4 Bayesian Maximum Entropy estimation methodology

BME provides a mathematically rigorous geostatistical space/time framework for the 

estimation of PAH at locations where neither PAH or PM2.5 are monitored.19,20 BME can 

incorporate information from multiple data sources and is implemented using the BMElib 
suite of functions in MATLAB™.22,23 The buttress of BME has been detailed in other 

works,21,24,25 and can be summarized as performing the following steps: 1) gathering the 

general knowledge base (G-KB) and site-specific knowledge base (S-KB) characterizing the 

Space/Time Random Field (S/TRF) X(p) representing a process at p, 2) using the Maximum 
Entropy principle of information theory to process the G-KB in the form of a prior 

Probability Distribution Function (PDF) fG, through a mean trend and an isotropic 

covariance model, 3) integrating S-KB in the form of a PDF fS with and without 

measurement error using an epistemic Bayesian conditionalization rule (i.e. in this work, a 

priori information is updated on observed data) to create a posterior PDF fK and 4) creating 

space/time predictions based on the analysis. All the code and data used for the analysis 

presented in this work are available from https://github.com/reyesjmUNC/

ReyesEtAlJESEE_PAH.

In this study, we use an S/TRF to describe the variability of PAH across North Carolina in 

2005. In this work xh are the observed PAH data and fS(xs) is obtained at the locations where 

PAH is estimated from PM2.5 observations through either the LR (Equ 2) or the LMF (Equ. 

7) method. We can then calculate xk, the predicted daily PAH at the unmonitored location 

pk. More information about the prediction methodology can be found in the Supplementary 

Information.

2.5 Leave-One-Out Cross Validation accuracy analysis

To assess the prediction accuracy of the LMF and LR methods, a Leave-One-Out Cross 

Validation (LOOCV) accuracy analysis is performed. For each monitoring station where 

observed PAH data exist, all observed data from a given station are removed one at a time 

and a BME prediction was conducted (without recalculating fG) to obtain the BME 

predictions at that station using all the remaining observed and estimated data.

The difference between each mean predicted PAH x̃i and observed PAH value x̂i is the 

prediction error, ei = x̃i – x̂i. The prediction accuracy was quantified based on prediction 

error statistics, which consist of the Mean Error (ME, ng/m3), Variance of Errors (VE, 

(ng/m3)2), Root Mean Squared Error (RMSE, ng/m3), Mean Squared Error (MSE, (ng/m3)2) 

and the squared of the Pearson correlation coefficient (r2, unitless) calculated between 

observed and mean predicted values. LMF BME and LR BME predictions were then 

compared to kriging (i.e. predictions created only using observed PAH data) and cokriging 

(i.e. predictions created using both PAH and PM2.5 observed data).

2.6 Fire comparisons

Wildfires contribute to a sizable percentage of PAH emissions in the US.2 The mean 

difference in PAH concentrations near known wildfire locations were estimated. PAH was 

estimated on a fine grid across North Carolina on days with observed PAH data. PAH was 

estimated using 4 different prediction methods: 1) kriging, 2) cokriging, 3) LR BME and 4) 
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LMF BME. Fire data were obtained from the Federal Wildfire Fire Occurrence Website.26 

All fires greater than or equal to one acre in North Carolina, Virginia, Tennessee and South 

Carolina were collected in 2005 on days for which PAH observed data were measured where 

the start and control date of the fires were known (n = 213). A two-tailed two-sampled t-test 

(assuming unequal variances) is calculated on the PAH predictions on a fine grid at a 5% 

significance level. The significance test is performed on all fine grid predictions within 100 

km of known fire locations and all fine grid predictions outside of 100 km.

3. Results and Discussion

3.1 Neighborhood optimization

A log-transformation of PM2.5 and PAH were taken due to the skewness of observed values. 

For each PAH and BME estimation method (i.e. LR and LMF), the optimal values of the 

parameters n and STM defining the estimation neighborhood were selected such that it 

minimized the MSE. Across each PAH the n closest observed data that optimized the 

estimation neighborhood was always smaller for the LMF method compared to the LR 

method (Table 1). Generally, we expect that the calibration of the LMF method requires less 

paired PAH/PM2.5 values because it is more parsimonious (i.e. has less parameters) than the 

LR method. Indeed, we find that the parameter n ranges from 2-5 for the LMF method 

whereas n ranges from 7-14 for the LR method. Benzo(g,h,i)perylene, indeno(1,2,3-

c,d)pyrene and benzo(e)pyrene require n = 2 from the LMF method, the least amount of 

paired PAH/PM2.5 values across all PAHs. Seven out of 9 PAHs in the LR method require n 
= 14.

Across each PAH and Total PAH, the minimized MSE was consistently lower for the LMF 

method than the LR method with the exception of benzo(a)pyrene. With these optimized 

neighborhoods, estimates were created by each method and each PAH is predicted across 

North Carolina using BME.

The PAH estimation neighborhood for the LMF method is smaller than the LR method. Out 

of the previously mentioned studies, very little use observed PAH data and of those studies 

that do, most observed data come from short-lived monitoring campaigns. The results 

presented in this work utilize long-term, established PM2.5 regulatory monitoring sites. 

PM2.5 data is comparatively plentiful. Previously, data fusion methods have blended 

together multiple air pollutants that have different spatial supports.27,28 By developing a 

relationship between a few PAH observations and several PM2.5 observations, the door is 

opened to applying this relationship to a network with a large amount of publicly available 

data. Data sparse environments (e.g. PAH) can benefit from data rich secondary 

environments (e.g. PM2.5). However, for this relationship to be fully exploited, it must be 

constructed in such a manner that best utilizes the limited data set. That is, the relationship 

between PAH and PM2.5 must be parsimonious. The LMF method has only one parameter 

to be estimated, namely, LMF(Equ. 6). The minimum number of observed data needed to 

construct a PAH estimation is low with NLMP(pj) ≥ 1. The PAH estimates created from the 

LMF method required less observed data than the LR method. We hypothesize that this 

increase in the number of parameters makes the LR model less parsimonious, requiring 

Reyes et al. Page 7

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2018 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



more paired PAH and PM2.5 to optimize the estimation neighborhood. The PAH paired data 

is then outside of the relevant air shed of estimation.

3.2 PAH prediction maps

This work created the first maps of predicted PAH in space/time across the US state of North 

Carolina for 2005 using observed data. Each of the 9 PAHs was predicted on a fine grid 

across North Carolina every day observed PAH data were collected (41 days) in 2005 for the 

4 prediction methods: kriging, cokriging, LR BME and LMF BME. Estimation method 

parameters can be found in Supplementary Information (Supplementary Tables S1 and S2). 

Mean prediction maps of benzo(b)fluoranthrene for the 4 methods are displayed across 

North Carolina on April 16, 2005 with observed and PAH estimates pictured (Fig. 1). The 

kriging map consistently predicts the highest PAH concentrations across the 4 methods at 

unmonitored locations with the least realistic gradient. Kriging has difficulty distinguishing 

between multiple PAH fronts and plumes. The minimal gradation is influenced by the sparse 

data. Predictions made far from observed data therefore had a large associated variance. The 

sparse data was only able to pick up the coarsest of PAH gradients. The cokriging map is 

visually similar to the kriging map. The cross-covariance relationship between PAH and 

PM2.5 contributed little to the cokriging predictions (see Table S2). The prediction map 

becomes visibly different for the LR BME method. The gradient for the LR BME method 

falls more in line with a geographical pattern across the state. There is an increase in 

concentration in Eastern North Carolina compared with the kriging and cokriging maps. The 

LMF BME prediction method produces the lowest PAH concentrations across large sections 

of the state. Across all 4 methods, the relatively highest concentrations were found in 

Western North Carolina and concentrations become increasingly more refined across 

methods. The LMF map is the only map to show two different PAH concentration fronts: 

one in the western part of the state and another separate front in the Eastern North Carolina.

Few other studies have created maps of ambient PAH concentrations across a given area 

using geostatistical methods from observed data. These limited studies are due in part to the 

lack of observed data, much like the mapping scenario presented in this work and previous 

works.13 One previous study fit a temporal trend comparing a few long-running PAH 

stations from the Great Lakes region of the US and a few stations across Europe. However, 

only a temporal trend was fit through a regression and a spatial interpolation was not 

conducted.29 One of the few studies that created maps over a large area, displayed 

benzo(a)pyrene across Europe for 1990, 2001 and 2005 using a transport model.8 Another 

study creating maps of PAH across Europe utilized kriging to estimated benzo(a)pyrene for 

2012 using two different chemical transport models as data.15 A study in Portugal used 

observed PAH data extracted from lichen and created maps using kriging.11,12 Land use 

regression models have also been used to estimate PAH.30,31 Few studies have investigated 

PAH bound to PM.32 The closest study to the LR BME method presented in this work used a 

monitoring campaign along with personal monitors to analyze PAH from PM2.5 in which 

predictions were made at unmonitored locations using kriging in Kaohsiung city, Taiwan.14 

A regression model with a variety of explanatory variables was then applied to PM2.5 data 

to predict PAH. With only a handful of observed PAH data taken throughout the year, the LR 

BME and LMF BME method can create estimates with a corresponding uncertainty that was 

Reyes et al. Page 8

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2018 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



incorporated into the BME framework. Incorporating the PAH estimates added to the set of 

available data ultimately used for prediction allowing for increased spatial variation. Of the 

BME methods, LMF BME was superior in terms of visually distinguishing spatial variations 

of mean predicted PAH concentrations across the state.

3.3 Cross-validation

A LOOCV analysis was performed across 2005 using the 4 prediction methods. Summary 

statistics were calculated showing performance for Total PAH (Table 2). Cross validations 

statistics for all 9 PAHs can be found in Supplementary Information (Supplementary Table 

S3). For Total PAH ME decreases from kriging to LMF BME. ME is negative across each 

prediction method meaning that overall, the methods under-predicts observed Total PAH 

concentrations. ME is highest in magnitude for kriging and closest to zero for LMF BME. 

There is a 58.8% reduction in ME from LR BME to LMF BME. There is less variation in 

error from kriging to LMF BME as seen through a 26.7% reduction in VE from kriging to 

LMF BME. There is a consistent reduction in MSE across the 4 prediction methods. There is 

a 28.4% reduction in MSE from kriging to LMF BME. The correlation coefficient increases 

across methods. There is a 10.3% increase in r2 from LR BME to LMF BME. The 

performance statistics from kriging are similar to cokriging. This echoes the results seen in 

the prediction maps. Traditional incorporation of PM2.5 as a co-pollutant through cokriging 

adds little to the predictive captivity of PAH. Incorporating PM2.5 with the BME methods 

showed more substantial improvements in the cross-validation statistics, with the best 

performance obtained through the LMF BME method.

The LMF BME method consistently outperformed the other comparison methods as seen 

visually through maps and through the LOOCV statistics. Of the 4 prediction methods, 

kriging performed the worst. Kriging predictions were driven exclusively by the observed 

data. Cokriging performed similarly to kriging. Cokriging is an intuitive choice for 

collocated, ambient, environmental parameters in a geostatistical setting. In the literature, to 

the best of our knowledge, cokriging has not been used to predict ambient PAH 

concentrations, making it an ideal candidate method to explore. In this work the cokriging 

cross-covariance is able to capture the relationship between PAH and PM2.5. However, as 

seen through predictive maps and through cross validation, the cokriging incorporation of 

PM2.5 contributes little in terms of predictive capacity. Linear regression is another intuitive 

choice with collocated data. The LR BME method shows a marked improvement visually 

and through estimation accuracy. The LR method is able to estimate PAH at PM2.5 space/

time locations using an optimized neighborhood customized for each PAH. However, LR 

performed consistently worse than the LMF method. The LR method uses 2 parameters (i.e. 

β0 and β1 while the LMF method uses only one. We hypothesize that this difference in the 

number of parameters influences cross validation performance.

3.4 Probability of exceedance

In a geostatistical framework, predictions come in the form of a PDF with a corresponding 

mean and variance. With this PDF, the probability of exceeding a given value can be 

calculated. An annual benzo(a)pyrene concentration of 0.25 ng/m3 has been suggested in the 

United Kingdom.8 With this standard in mind, the probability of exceeding this cutoff was 
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calculated for annual benzo(a)pyrene concentrations on a fine grid in North Carolina in 2005 

for each prediction method by taking the mean and variance of daily benzo(a) pyrene 

predictions (Fig. 2). Overall PAH concentration decrease across methods, thus the 

probability of exceeding the 0.25 ng/m3 cutoff in turn decreases from kriging to LMF BME. 

Across methods, the region of the state with the relatively highest probability of exceedance 

is maintained as Western North Carolina as well as the border with the US state of South 

Carolina. Across all prediction methods, the probability of exceedance remained relatively 

low with the maximum probability of exceedance remaining below 0.50. The area covered 

from increasing probabilities of exceedance increases across the 4 prediction methods (Table 

3). The cokriging method had the lowest maximum probability of exceedance (i.e. 0.16) 

across the annual prediction locations with 54,432 km2 having a probability of exceedance ≥ 

0.15. We see the BME methods were better able to differentiate areas of high and low 

probabilities of exceedance. The LMF BME was best able to distinguish the maximum 

probability of exceedance. Neither the kriging or cokriging maps contain any area with a 

probability of exceedance ≥ 0.30. The LMF BME method has 2.5 times the area with ≥ 0.30 

probability of exceedance compared to the LR BME method (i.e. 6,480 km2 and 2,592 km2, 

respectively). Through having more realistic ambient predictive gradients, the LMF BME 

method becomes an effective tool to identify areas of exceedance of different PAH 

concentrations.

3.5 Association with wildfires

The mean difference in PAH predictions (for the 9 PAHs and Total PAH) as calculated 

through the 4 prediction methods was found through a two-sampled t-test comparing areas 

near (≤ 100 km) and far (> 100 km) from known wildfire locations predicted across all days 

with observed data in 2005 (Table 4). For the LMF method, all 9 PAHs and Total PAH 

showed a statistically significant difference between predictions near versus far from fires. 

For the LR method 6 PAHs and Total PAH showed a significant difference. For both kriging 

and cokriging 4 PAHs and Total PAH showed a significant difference greater than zero. Of 

those PAHs that showed a significant difference greater than zero, the LMF method had the 

largest differences across 8 PAHs (i.e. benzo(g,h,i)perylene being the exception) and Total 

PAH. Known fire locations for April 16, 2005 are marked along with a 100 km radial buffer 

surrounding each location (Fig. 1). Across prediction methods, PAH concentrations are 

higher within/near these buffers. Indeed, benzo(b)fluoranthrene (depicted in Fig. 1) was one 

of the 4 PAHs (along with Total PAH) that showed both a significant, positive difference 

across all prediction methods.

This work investigates ambient concentrations of a set of particle-bound PAHs. Ambient 

concentrations alone cannot distinguish sources. However, there are PAH ratios associated 

with certain sources. The diagnostic ratio of indeno(1,2,3-c,d)pyrene/(indeno(1,2,3-

c,d)pyrene + benzo(g,h,i)perylene)=0.62 is associated with wood burning.8 This ratio was 

calculated for March 5, 2005 data across all 4 prediction methods (Fig. 3). This day was 

chosen as one of the highest fire activity day for 2005, and thus, most likely to show an 

impact from fires. The ratio for kriging and cokriging remained under 0.62 across all 

prediction locations of the day. There is little variation of this ratio across the day for kriging 

and cokriging. This ratio increases and becomes closer in magnitude to 0.62 for the BME 
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methods. There is more variation of this ratio for the LR BME method. We hypothesize that 

the LR BME method has better differentiation between PAH sources. LMF BME has the 

largest variation of the PAH diagnostic ratio, with the largest number of predictions near the 

0.62 value. Both kriging and cokriging have ≤ 3.5% of prediction ratios for the day around 

0.62 (i.e. 0.62 ± 0.05), LR BME has 5.6% of prediction ratios around 0.62 and LMF BME 

has 12% of prediction ratios around 0.62.

Gathering information about wildfire smoke has become increasingly important as the 

number of large wildfires have increased in recent years.33 The chronic health effects of 

wildfire smoke for firefighters and the general population is currently lacking or sparse in 

the literature.34–36 The LMF BME method was better able to distinguish higher significant 

differences in PAH concentrations near known fire locations compared with other prediction 

methods. Of the 4 prediction methods the LMF was the only method that showed 

statistically significant, positive differences around areas with fires across all 9 PAHs and 

Total PAH. Although each fire may have a different acreage burned and the same buffer size 

was used for all the fires, the significance implies an association. Depending on the acreage 

burned from a fire, the type of vegetation burned and the duration of the fire, the smoke 

produced may be long lasting and may have long range transport. Smoke may have lingering 

effects past the control date of a fire. When the control date of fires is extended by one day, 

the kriging and cokriging methods have more PAHs with a statistically significant increase 

in concentrations near versus far from fires (Supplementary Table S4-S7). Diagnostic ratios 

should not be used in isolation. However, when used along known fire locations, it can 

strengthen the association between PAH concentration and its known sources.

3.6 Overall contributions

The LMF BME method allows for straightforward predictions of PAHs to be used for 

exposure assessments. There are a plethora of studies exploring the association between 

ambient PM2.5 and various health endpoints.37–39 However, there are far less studies that 

explore ambient PAH exposures and associated health effects. Occupational inhalation 

exposures and associated health outcomes including lung cancer have been more thoroughly 

investigated in comparison to ambient exposures.7 Few studies have investigated chronic 

ambient concentrations of PAHs. Many of the epidemiologic studies that have been explored 

investigate respiratory illnesses such as lung cancer and pulmonary function.7,15,40 However, 

these studies are small. The lack of long-term ambient concentrations to PAHs may be 

related to inadequate exposure data. Analyzing PM filters for specific PAHs can be very 

costly, making it difficult of obtain larger amounts of observed data needed for exposure 

assessment.9 The LMF BME method allows for an efficient and cost-effective way to utilize 

minimal PAHs observed data. The LMF BME method can be easily utilized to fill in this 

clear gap in the literature. Tied with corresponding health data, ambient predictions 

calculated through the LMF BME method could be used to assign exposure. Health metrics 

can then be calculated from the exposures. This opens the door to investigate possible health 

endpoints as well as assigning risk.

This work created the first maps of ambient PAH concentration across the US state of North 

Carolina using observed data through the LMF BME geostatistical method. This method 
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developed a relationship between paired PAH and PM2.5 data in a manner that is a 

parsimonious and cost-effective that can be utilized in a data sparse environment. The LMF 

BME method outperforms more traditionally used geostatistical methods and has the ability 

to elucidate a significant association between PAH predictions and known fire locations. The 

LMF BME method has the potential to be used to assign exposure in epidemiologic analyses 

to fill in the significant knowledge gap currently existing in the literature between ambient 

PAH exposures and potential health outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Map of benzo(b)fluoranthrene (ng/m3). Maps of mean benzo(b)fluoranthrene concentration 

for North Carolina on April 16, 2005 across the 4 prediction methods: (a) kriging, (b) 

cokriging, (c) Linear Regression BME, (d) log-Mass Fraction BME. Square markers indicate 

observed data, circle markers indicate PAH estimates, X's mark known fires for that day with 

a 100 km buffer.
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Figure 2. 
Probability of exceedance. Probability of annual benzo(a)pyrene exceeding 0.25 ng/m3 

across North Carolina in 2005 as predicted by (a) kriging, (b) cokriging, (c) Linear 

Regression BME and (d) log-Mass Fraction BME.
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Figure 3. 
PAH ratios. Ratio of indeno(1,2,3-c,d)pyrene/(indeno(1,2,3-c,d)pyrene

+benzo(g,h,i)perylene) on March 5, 2005 in North Carolina across the 4 prediction methods: 

(a) kriging, (b) cokriging, (c) Linear Regression BME, (d) log-Mass Fraction BME. Square 

markers indicate the ratio of observed data, circle markers indicate the ratio of PAH 

estimates, X's mark known fires for that day with a 100 km buffer.
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Table 2

Cross validation statistics. Leave-One-Out Cross Validation statistics for Total PAH (summation of the 9 

PAHs) comparing observed and predicted concentrations across the 4 prediction methods for North Carolina in 

2005. ME is Mean Error, VE is Variance of Error, RMSE is Root Mean Squared Error, MSE is Mean Squared 

Error and r2 is the Pearson correlation coefficient squared.

Statistic Kriging Cokriging Linear Regression BME log-Mass Fraction BME

ME (ng/m3) -0.145 -0.137 -0.102 -0.042

VE (ng/m3)2 0.806 0.782 0.764 0.591

RMSE (ng/m3) 0.904 0.890 0.875 0.765

MSE (ng/m3)2 0.818 0.792 0.766 0.586

r2 (unitless) 0.747 0.752 0.744 0.821
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Table 4

Mean difference in PAH near versus far from fires. 95% confidence intervals comparing the mean difference in 

predicted PAH near (within 100 km) versus far (> 100 km) from fires for each of the 9 PAHs and Total PAH 

across the 4 prediction methods. Units are in ng/m3.

PAH Kriging Cokriging Linear Regression BME log-Mass Fraction BME

benz(a)anthracene (-4.94E-03,-2.17E-03)* (-2.61E-03,-1.07E-05)* (-1.26E-03,1.07E-03) (1.57E-03,4.38E-03)*,#

chrysene (-6.67E-03,-3.53E-03)* (-3.74E-03,-8.28E-04)* (-9.40E-04,1.67E-03) (2.07E-03,5.39E-03)*,#

benzo(b)fluoranthrene (3.98E-03,1.11E-02)*,# (3.78E-03,1.10E-02)*,# (1.09E-02,2.23E-02)*,# (2.36E-02,3.02E-02)*,#

benzo(k)fluoranthrene (3.14E-03,6.47E-03)*,# (2.32E-03,5.01E-03)*,# (5.27E-03,7.94E-03)*,# (7.80E-03,1.08E-02)*,#

benzo(e)pyrene (-2.92E-03,2.23E-03) (-3.17E-03,1.71E-03) (5.22E-03,9.80E-03)*,# (1.83E-02,2.49E-02)*,#

benzo(a)pyrene (-3.83E-03,1.84E-03) (-6.24E-03,-8.42E-04)* (2.23E-03,1.37E-02)*,# (5.14E-03,1.02E-02)*,#

indeno(1,2,3-c,d)pyrene (1.87E-02,3.05E-02)*,# (1.73E-02,2.87E-02)*,# (2.04E-02,3.24E-02)*,# (4.79E-02,6.11E-02)*,#

benzo(g,h,i)perylene (3.04E-02,4.27E-02)*,# (2.54E-02,3.66E-02)*,# (2.72E-02,4.06E-02)*,# (3.13E-02,4.06E-02)*,#

dibenzo(a,h)anthracene (-2.07E-02,-1.36E-02)* (-1.71E-02,-1.07E-02)* (-4.80E-03,2.16E-03) (1.90E-03,8.77E-03)*,#

Total PAH (2.28E-02,6.75E-02)*,# (2.13E-02,6.57E-02)*,# (6.29E-02,1.03E-01)*,# (1.72E-01,2.30E-01)*,#

*
mean difference is statistically significant (p-value≤ 0.05),

#
mean difference > 0.
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